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ABSTRACT

In functional Magnetic Resonance Imaging group studies, un-

certainties on the individual BOLD responses are not taken

into account by standard detection procedures, which may

limit their sensitivity. Mixed-effect models have been intro-

duced to derive decision statistics that weight the subjects ac-

cording to their reliability. To date, however, the associated

statistical tests are almost not used by investigators, partly

because they are inexact in that they control only approxi-

mately the false positive risk. We tackle this problem using

a permutation testing framework that yields exact tests under

mild nonparametric assumptions. This approach enables us to

evaluate the sensitivity of mixed-effect statistics on a mental

calculation experiment involving men and women.

Index Terms— Magnetic resonance, Brain, Statistics.

1. INTRODUCTION

The object of functional Magnetic Resonance Imaging (fMRI)

group analysis is to identify brain regions where the Blood

Oxygenation Level Dependent (BOLD) responses correlate

with behavioral, clinical, or genetic predictors. For instance,

one may seek differences in BOLD responses between men-

tally ill patients and healthy controls, or correlate responses

with psychological test scores in an homogeneous popula-

tion. Group inferences are usually performed via massively

univariate t- or F -tests [1] after a spatial normalization step

that renders data from the different subjects grossly compa-

rable on a voxelwise basis. The general linear model (GLM)

underlying both t- and F -tests assumes that the normalized

data is identically and normally distributed across subjects.

This condition, however, is barely met due to different

amounts of noise in the fMRI time series, subject-dependent

deviations from the canonical hemodynamic response func-

tion, spatial normalization errors, etc. We may thus expect

increased sensitivity by extending the GLM so as to account

for inhomogeneous errors (heteroscedasticity), and derive test

statistics accordingly. In this paper, we generalize the maxi-

mum likelihood ratio-based approach of [2], which was re-

stricted to one-sample inference. When testing the global de-

pendence between the BOLD responses and the predictors,

the maximum likelihood ratio statistic may be calibrated us-

ing permutations to yield an exact test under mild assump-

tions, unlike previous parametric approaches [3, 4, 5, 6].

2. MIXED-EFFECT MODEL

After scanning n subjects during a cognitive experiment, we

process respective fMRI data individually so that, in each par-

ticular voxel of the reference grid and for each subject i, we

have a noisy estimate yi of the BOLD effect in response to

a given contrast of experimental conditions. Provided that

a large number of scans is available [3, 2], we shall assume

that yi is normally distributed around the unobserved effect

zi, that is: yi = zi +ei with ei ∼ N (0, s2
i ), the standard error

si being known.

Our goal is to correlate the effects z = [z1, . . . , zn]� with

a given set of p predictors, as represented by a n × p matrix

X. We start with assuming that z relates with X through a

GLM: z = Xβ + ε, where β is a p × 1 vector of unknown

regression coefficients and the error ε ∼ N (0,V) is a zero-

mean multivariate Gaussian. Further assuming statistical in-

dependence between the within-subject and between-subject

variability sources, we get:

y = Xβ + ε′, ε′ ∼ N (0,V + W),

with W = diag(s2
1, . . . , s

2
n). In our setting, W is known

while V is searched in the space S of positive scalar ma-

trices, i.e. V = σ2In for some σ > 0, meaning that the

effects are assumed independently and identically distributed.

This model is both a special case of Laird & Ware’s two-stage

linear model [7], and a generalization of the standard GLM,

which corresponds to W = 0.

2.1. Parameter estimation

In order to estimate both the effect β and the variance V, we

may jointly minimize the negated log-likelihood:

−2 log p(y|β,V) = n log(2π) + log |V + W|
+ ‖(V + W)−

1
2 (y −Xβ)‖2
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At fixed V, this yields a weighted least-square problem.

However, since V is also to be optimized, there is no general

closed-form solution. In order to find at least a local likeli-

hood maximizer, we use the Expectation-Maximization (EM)

algorithm [8] that derives from considering z as missing data.

At each iteration k, the following two steps are performed:

◦ E-step. Given current estimates (βk,Vk), compute the

posterior density p(z|y,βk,Vk), which is seen to be normal

N (z̄k,Σk) with:

Σk = (W−1 + V−1
k )−1

z̄k = Σk(W−1y + V−1
k Xβk)

◦ M-step. Update the parameter estimates by maximizing

the complete-data expected log-likelihood:

Qk(β,V) ∝ log |V|+‖V− 1
2 (zk−Xβ)‖2+trace(ΣkV−1),

yielding the explicit rule:

βk+1 = (X�X)−1X�z̄k

Vk+1 =
1
n

[
‖z̄k −Xβk+1‖2 + trace(Σk)

]
In

Notice that joint likelihood maximization is one of the two

estimation methods originally proposed for the two-stage lin-

ear model [7]. Alternatively, V may be estimated prior to β
by restricted maximum likelihood (ReML), which is shown

to yield an unbiased estimate and seems therefore preferable

from a pure estimation perspective. There is no evidence,

however, that the ReML strategy leads to more powerful test-

ing procedures.

2.2. Generalized F statistic

We now turn to the problem of testing the null hypothesis

H0: Cβ = 0 for a given q × p matrix C. In standard GLM

context, such a test classically uses a F statistic, which lacks

justification under our more general model and may hence be

sub-optimally sensitive. A systematic and customary way to

select a test statistic is then to use the (log) maximum likeli-

hood ratio (MLR):

Λ = −2 log
max(Rp∩H0)×S p(y|β,V)

maxRp×S p(y|β,V)

We may compute the denominator using the above EM

algorithm. Computing the numerator involves a straightfor-

ward EM variant in which the M -step is modified so that

β is optimized under the linear constraint Cβ = 0, yield-

ing the update rule: βk+1 = P(X�X)−1X�z̄k where P =
Ip − (X�X)−1C�[C(X�X)−1C�]−1C.

Owing to a general result known as Wilks’ phenomenon,

Λ is asymptotically distributed like a χ2
q as the sample size

n increases, which provides a quick approximate test. Inter-

estingly, Λ generalizes the F statistic in the sense that, for a

standard GLM (V = σ2In and W = 0), both statistics are

related through a strictly increasing function:

Λ = n log
[
1 +

qF

n− p

]
∼

n→∞ qF,

and are thus equivalent from a decision theoretic viewpoint.

2.3. Generalized t statistic

When q = 1 so that the contrast Cβ is a real number, one

may want to perform a one-sided test in order to filter out

negative contrasts. To that end, we define the following

one-sided MLR variant: λ = sign(Cβ̂)
√

Λ, where β̂ is

the maximum likelihood effect estimate as approximated by

the EM algorithm. By Wilks’ phenomenon, λ is asymptot-

ically distributed like N (0, 1) under H0. Furthermore, it

is easy to check that λ generalizes the t statistic given that

t = sign(Cβ̂ols)
√

F where β̂ols is the ordinary least-square

estimate.

2.4. Permutation test

Consider the special case where C = [Ip−1, 0p−1×1], assum-

ing conventionally that the last column of X is the constant

predictor. Testing H0: Cβ = 0 then amounts to testing the

global statistical independence between z and X. Such a

test can be performed approximately by calibrating the MLR

statistic using the χ2
p−1 law, however this may lead to biased

false positive control for small samples. Permutation tests

then offer a valuable alternative, being exact at all sample

sizes and robust against deviations from normality [9, 10, 2].

The permutation test consists in tabulating the distribution

of Λ (or virtually any test statistic) by shuffling the data ac-

cording to yi → yπ(i), for each permutation π of {1, . . . , n},
and computing the corresponding value Λπ of the test statis-

tic. This is justified by the fact that, under statistical inde-

pendence, the observations are exchangeable in that all the n!
permuted samples are equally likely.

3. RESULTS

In the sequel, we focus on the two-sample model, in which

X has two columns: x1 is a binary vector of zeros and ones

standing for group labels (e.g. males/females), and x2 ≡ 1
is the constant predictor used to model a group-independent

baseline. To test the effect of group membership, we may

then use the generalized t statistic associated with the one-

dimensional contrast C = [1, 0], and calibrate the test using

the above permutation mechanism which, in this case, simpli-

fies to permutations of labels [9].

3.1. Simulation

We simulated data according to the model with a nonzero

group effect β1 = 1 and an offset β2 = 0 (which has no
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impact). The within-subject variances s2
i were generated

independently from a Γ(a, b) distribution, and the between-

subject variance was set to σ2 = 1
In order to examine the effects of heteroscedasticity and

sample size, we considered groups of equal size N = 5, 10,

15, 20, and Gamma distribution parameters (a, b) such that:

b = 1/4, 1, 4, a = 1/b. This way, within-subject variances

were distributed with mean 1 and variance b controlling the

“degree of heteroscedasticity”. For all 4 × 3 = 12 possible

combinations of N and b, 100 000 independent samples of

size N were generated and the permutation tests associated

with both the t statistic and our mixed-effect (MFX) general-

ization were performed.

By varying the detection threshold over the range of

observed statistic values, receiving operator characteristic

(ROC) curves were obtained in each case. Each ROC curve

was then summarized by its area under curve (AUC), an over-

all measure of sensitivity. Figure 1 contains plots of AUC

values against group sizes for every value of b and each test

statistic.

Fig. 1. Area under curve (AUC) of ROC curves obtained for differ-

ent values of n and b, using the standard t statistic (solid line) and

its MFX generalization (dashed line). Line thickness indicates the

value of b: thin lines correspond to b = 1/16, medium-thick lines to

b = 1, and thick lines to b = 16.

As would be expected, sensitivity as measured by the

AUC is seen to increase with sample size. Theoretically,

this quantity goes to 1 as the number of subjects becomes

arbitrarily large, for both test statistics and for any value of

b. However, even for datasets of 20 subjects, which is con-

sidered ample in fMRI group analysis context, a noticeable

sensitivity gap can be observed between standard GLM-based

and MFX tests, even under moderate heteroscedasticity.

3.2. Real data

We now present results of the method on a “localizer” fMRI

dataset involving 10 subjects of each sex [11]. Among other

tasks, the subjects had to perform mental calculations speci-

fied by oral instructions. Subtracting the effect of passively

hearing sentences from the global effect induced by the cal-

culation task thus enables us to detect which brain regions

are involved specifically in mental calculus. The question is

whether this task is performed differently by men and women.

Within-subject analyses were conducted using SPM2

(Statistical Parametric Mapping software). Data were sub-

mitted successively to motion correction, slice timing, spatial

normalization, and spatial smoothing using a 5 × 5 × 5mm3

FWHM Gaussian filter. At the between-subject level, we

are interested in regions that display higher activation levels

in one group than in the other, thus defining the “Female −
Male” and “Male − Female” contrasts. Group analyses were

performed on the intersection of the whole-brain masks of

all subjects (36, 806 voxels). For both contrasts, the statisti-

cal maps were thresholded for a 1% false positive rate using

permutations.

For comparison, we also report the results of the para-

metric t-test implemented in SPM, when thresholded at the

same level of expected false positive rate (P ≤ 0.01 uncor-

rected), using the Student distribution with 18 degrees of free-

dom. In SPM, both voxel-level and cluster-level corrected P -

values are computed using closed-form approximations based

on Random Field Theory [12]. In the following, we report

clusters whose cluster-level or voxel-level P -value was found

less than 5% in at least one of the three statistical procedures.

“Female − Male” contrast. Table 1 and Fig. 2 summa-

rize the results obtained for the “Female − Male” between-

subject contrast. A single significant region is detected in the

left intra-parietal sulcus by all three tests. The increasing val-

ues for cluster extent suggest a higher sensitivity of the per-

mutation approach over the parametric one, and of the MFX

t statistic over the usual t statistic. The latter observation is

confirmed by the corrected P -values, which are more signif-

icant for the MFX test, especially at the voxel level in this

case.

The region is found significant at 5% in terms of cluster

size by the SPM t-test, and in terms of activation peak by

the MFX permutation test, while it falls short of significance

according to both criteria with the permutation test using the

usual t statistic. It must be stressed however that the signifi-

cance levels given by SPM are known to be biased when the

applicability conditions of random field theory are not met

[13], which is the case here given the strong disagreement

with permutation-based P -values which are theoretically ex-

act.

“Male − Female” contrast. Lower halves of Table 1 and

Fig. 2 summarize the results obtained for the “Male − Fe-

male” contrast. A single significant region is detected in the

left angular gyrus, this time only by the permutation MFX

test. While not significant at the cluster level, its activation

peak survives voxel-level familywise error correction at 5%.

It can also be noted that the cluster-level P -value given by
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(a) SPM t-test (b) Perm. t-test (c) MFX test

Fig. 2. Maximum Intensity Projection (MIP) of the group statistical

maps obtained for “Female−Male” (top row) and “Male− Female”

(bottom row) in a mental calculus task. Only clusters larger than 20

voxels are represented.

Cluster Statistical Cluster- Cluster Voxel

anatomical test level extent peak

location procedure Pcorr (voxels) Pcorr

Female −Male

Left SPM t-test 0.01 99 1

Intra-Parietal Perm. t-test 0.13 103 0.68

Sulcus MFX test 0.09 155 0.04

Male − Female

Left SPM t-test 0.67 30 0.99

Angular Perm. t-test 0.50 32 0.51

Gyrus MFX test 0.42 43 0.04

Table 1. Results of two-sample inference for a mental calculus task.

SPM is now more conservative than that given by the per-

mutation tests, presumably because of the small size of the

detected cluster.

4. CONCLUSION

Our study demonstrates the possibility of increasing sensi-

tivity in group analyses while maintaining exact control on

specificity. This is done by combining a mixed-effect variant

of the t (or F ) statistic with a permutation test. From a cog-

nitive viewpoint, the proposed test was the only one we tried

to reveal that, during a mental calculus task, women might

have higher tendency than men to solicit the left intra-parietal

sulcus, known to be involved in number processing. On the

other hand, men might have a higher level of activation in the

left angular gyrus, known to be involved in memory recalling.
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